Heterogeneous Cell Population Dynamics: Equation-Free Uncertainty Quantification Computations
نویسندگان
چکیده
We propose a computational approach to modeling the collective dynamics of populations of coupled heterogeneous biological oscillators. In contrast to Monte Carlo simulation, this approach utilizes generalized Polynomial Chaos (gPC) to represent random properties of the population, thus reducing the dynamics of ensembles of oscillators to dynamics of their (typically significantly fewer) representative gPC coefficients. Equation-Free (EF) methods are employed to efficiently evolve these gPC coefficients in time and compute their coarse-grained stationary state and/or limit cycle solutions, circumventing the derivation of explicit, closed-form evolution equations. Ensemble realizations of the oscillators and their statistics can be readily reconstructed from these gPC coefficients. We apply this methodology to the synchronization of yeast ∗To whom correspondence should be addressed: [email protected]; +1-609-258-2818
منابع مشابه
Heterogeneous animal group models and their group-level alignment dynamics: an equation-free approach.
We study coarse-grained (group-level) alignment dynamics of individual-based animal group models for heterogeneous populations consisting of informed (on preferred directions) and uninformed individuals. The orientation of each individual is characterized by an angle, whose dynamics are nonlinearly coupled with those of all the other individuals, with an explicit dependence on the difference be...
متن کاملCoarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps.
We present a computer-assisted approach to coarse graining the evolutionary dynamics of a system of nonidentical oscillators coupled through a (fixed) network structure. The existence of a spectral gap for the coupling network graph Laplacian suggests that the graph dynamics may quickly become low dimensional. Our first choice of coarse variables consists of the components of the oscillator sta...
متن کاملDynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملMathematical Model of Novel COVID-19 and Its Transmission Dynamics
In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...
متن کاملDynamic Simulation and Control of a Continuous Bioreactor Based on Cell Population Balance Model
Saccharomyces cerevisiae (baker’s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance equation (PBE) can be used to capture the dynamic behavior of such cultures. In this work, an unstructured-segregated model is used f...
متن کامل